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Resumen This paper addresses the attitude stabilization problem for
a picosatellite. The proposed solution consists of a nonlinear controller
based on a combination of two nonlinear control design techniques, back-
stepping and exact tracking error dynamics passive output feedback. Nu-
merical simulations show the performance of the proposed controller.

1. Introduction

During the last two decades there has been a gradual tendency to rearrange
Earth-orbiting architectures from the single large satellite architecture to constel-
lations of a number of small satellites. Constellations of small satellites promise
better mission flexibility and success by distributing the tasks and by reducing
the possibility of a catastrophic failure. If one small satellite of the constellation
fails, others can continue operating until a replacement is launched.

As a consequence, a fast growing small satellite industry has enabled in-
creasingly capable and cost-effective space missions by embracing reduced re-
quirements and integrating commercial technology. This growing small satellite
interest has also spread throughout the academic research and has resulted in
nanosatellites (< 10kg) and picosatellites (< 1 kg) with an emphasis on de-
creasing the size through application of advanced technologies while trading off
capability. In this framework, the California Polytechnic State University (Cal
Poly) at San Luis Obispo together with the Space Systems Development Lab-
oratory (SSDL) at Stanford University developed the CubeSat program whose
aim is to provide a standard low-cost platform to design a class of picosatellites,
called CubeSats [1].

The work reported in this paper is part of a study of possible actuators con-
figurations and control methods and for the CubeSat type picosatellite developed
by the Engineering Institute from the National Autonomous University of Mex-
ico and the Research and Advanced Studies Centre of the National Polytechnic
Institute. The main mission of this picosatellite is to take pictures of the Earth
so that an accurate attitude control system becomes absolutely necessary.

The attitude control problem for a fully actuated spacecraft has received
considerable attention by the control design community. In particular, in [9] a
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large family of globally stable control laws is obtained by using the globally non-
singular unit quaternion attitude representation in an energy inspired Lyapunov
function. Using non minimal attitude representations in [8] passivity properties
of the spacecraft kinematics and dynamics are presented. Based on these passiv-
ity properties, linear asymptotic stabilizing controllers and control laws without
angular velocity measurements are also introduced. In [7] an adaptive control
scheme for attitude control is derived by using a linear parameterization of the
spacecraft dynamics; global convergence of the tracking error to zero is shown
using passivity arguments. In [10] the attitude control of a rigid spacecraft with
a cluster of N variable speed control moment gyroscopes is considered from the
perspective of passivity. Finally, in [4] the attitude stabilization is solved via
a structure variable controller using a minimal attitude representation and in
[3] the attitude control problem is solved using the backstepping control design
technique using a quaternion representation of attitude.

In this paper the attitude stabilization problem for a picosatellite is adressed
and solved. The proposed solution consists of a nonlinear controller based on a
combination of two nonlinear control design techniques, backstepping and ex-
act tracking error dynamics passive output feedback. The exact tracking error
dynamics passive output feedback control design technique, introduced in [5],
has been applied successfully to solve control problem in the power electronics
field and lately has been applied to solve control problems in mobile robotics [6].
Numerical simulations show the performance of the proposed controller.

The rest of the paper is organized as follows: Section 2 defines the different
reference frames used in the paper and introduces the picosatellite kinematics
and dynamics. Section 3 is devoted to control design, and numerical simulation
results are presented in Section 4. Conclusions and perspectives of future work
are stated in Section 5.

2. Picosatellite attitude dynamics

The following coordinate systems are used to define the picosatellite attitude
dynamics, see Figure 1.

Earth centered inertial coordinate system. This coordinate system is
labeled by SI and has its origin located in the center of the Earth. The xi axis
is oriented to the vernal equinox, the zi axis points toward the North pole and
the axis yi completes a right handed orthogonal frame.

Orbital coordinate system. The origin of this coordinate system, labeled
as SO, is in the satellite center of mass. The zo axis points to the Earth’s centre,
the xo axis points in the direction of the orbital velocity vector and the yo axis is
normal to the satellite orbit plane. Assuming a near circular orbit, the orbital co-
ordinate system rotates relative to the Earth centered inertial coordinate system
with an angular velocity given approximately by [2]

Ωo ≈
√

gr2
e

r3
c



where g is the gravity constant at sea level, re is the Earth’s radius and and rc

is the distance from the origin of the orbital coordinate system to the center of
the Earth.

Satellite fixed coordinate system. This coordinate system, labeled as
SB, has its origin in the satellite center of mass; it is usual to assume that
these axes coincide with the satellite’s principal inertia axes. In our particular
application we consider that the picosatellite weight distribution is such that the
zb axis is perpendicular to the lens of a high resolution camera. The other axis
is selected in order to complete a right handed orthogonal triad. The satellite
fixed coordinate system will match with the orbital coordinate system when the
satellite attitude is zero degrees in roll, pitch and yaw angles.

Figura 1. (Right) Coordinate systems. (Left) Virtual reality environment.

Picosatellite’s kinematics. Vectors related to the picosatellite’s kinemat-
ics can be expressed in terms of any of the previously described coordinate sys-
tems and the relationship between those coordinate systems is done by rotation
matrices, denoted by R, members of the special orthogonal group

SO(3) =
{
R|R ∈ R

3×3
, R�R = I, detR = 1

}
The rotation matrix can be expressed in terms of the four Euler parameters as
follows

R = I − 2ηS(ε) + 2S2(ε) (1)

where

η = cos
(

β

2

)
∈ R, ε = λ sin

(
β

2

)
∈ R

3



with θ the rotation about the arbitrary unit vector λ. The coordinate transfor-
mation of a vector r from coordinate system SA to coordinate system SB is
given by rb = Rb

ara. Finally, the time derivative of a rotation matrix can be
expressed as follows

Ṙb
a = Rb

aS(Ωab) (2)

where Ωab is the angular velocity of coordinate system SB relative to coordinate
system SA and S(·) is the cross product operator given by

x × y = S(x)y =

⎡
⎣ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤
⎦ y

The four Euler parameters define the unit quaternion q =
[
η ε�

]�, with

η2 + ε�ε = 1 (3)

The picosatellite’s kinematics equations expressed in terms of the unit quaternion
can be obtained from (1) and (2) as

η̇ = −1
2ε�Ωob

ε̇ = 1
2[ηI + S(ε)]Ωob

(4)

where Ωob is the angular rate of the picosatellite fixed coordinate system SB

relative to orbital coordinate system SO .
Picosatellite’s dynamics. The picosatellite attitude dynamics, found from

Newton’s second law, is described by the following differential equations

JΩ̇ib − S(JΩib)Ωib = τ (5)

where Ωib ∈ R
3 is the vector of angular rates of the picosatellite fixed coordinate

system SB relative to the Earth centered inertial coordinate system SI , J =
diag[Jxx, Jyy, Jzz ] ∈ R

3×3 is the picosatellite inertia matrix and τ is the vector
of external torques due to the inertia wheels.

The relationship between the angular velocity of the picosatellite fixed coor-
dinate system relative to the orbital coordinate system and the angular velocity
of the picosatellite fixed coordinate system relative to the Earth centered inertial
coordinate system is defined as

Ωob = Rb
oΩio + Ωib (6)

where Ωio = [0 Ωo 0]�, Rb
o = I − 2ηS(ε) + 2S2(ε).

3. Control design

Attitude error. Given a desired picosatellite attitude

qd =
[
ηd ε�d

]�



the attitude error quaternion is given by

q̃ = qd

⊗
q =

[
ηdη + ε�d ε

ηdε − ηεd − S(εd)ε

]
=

[
η̃
ε̃

]
(7)

where
⊗

is the quaternion product operator. Note that the picosatellite kine-
matics expressed in terms of the quaternion error is described by the following
equations

˙̃η = −1
2 ε̃�Ωob

˙̃ε = 1
2[η̃I + S(ε̃)]Ωob

(8)

Backstepping. Here we design the first part of the proposed nonlinear con-
troller inspired on the backstepping methodology. For, let us define

y = Ωob − Ωobd
(9)

where
Ωobd

= ± Δε̃

1 + ε̃�ε̃
(10)

with Δ = diag{δ, δ, δ} a positive definite matrix. Replacing (9) into (8) one has

˙̃η = −1
2 ε̃� (Ωobd

+ y)

˙̃ε = 1
2[η̃I + S(ε̃)] (Ωobd

+ y)
(11)

Consider now the following Lyapunov function

V1 = (η̃ ± 1)2 + ε̃�ε̃ (12)

whose time derivative along the dynamics (11) is given by

V̇1 = − Δε̃�ε̃

1 + ε̃�ε̃
± ε̃�y

thus, by driving y to zero we have that ε̃ = 0 and by LaSalle theorem, considering
(3), we conclude that η̃ = ∓1. Note now that equation (9) can be written in terms
of Ωib as follows

y =
(
Rb

oΩio + Ωib

) − Ωobd
(13)

defining
Ωibd

= Ωobd
− Rb

oΩio (14)

we have
y = Ωib − Ωibd

(15)

Now, we design a controller to drive y to zero using the exact tracking error
dynamics passive output feedback control design technique.

Exact tracking error dynamics passive output feedback. Consider
the following general model of physical systems,

Aẋ = J (x, u)x −R(x, u)x + B(x)u + E(t)
y = B�x

(16)



where x is an n dimensional vector, A is a constant symmetric, positive definite
matrix, J (x, u) is a skew symmetric matrix, R(x, u) is a symmetric positive
definite matrix and E(t) is a n-dimensional smooth vector function of t or some-
times, a constant vector. The input matrix B(x) is a n × m matrix and, hence
the output vector y is an m dimensional vector. Moreover, we assume that

J (x, u) = J0 +
∑m

j=1 J u
j uj +

∑n
k=1 J x

k xk, B(x) = B0 +
∑n

k=1 Bkxk

R(x, u) = R0 +
∑m

j=1 Ru
j uj +

∑n
k=1 Rx

kxk

(17)

Consider now that

A1 Given a feasible smooth bounded reference trajectory x∗(t) ∈ Rn, there
exists a smooth open loop control input u∗(t) ∈ Rm, such that for all tra-
jectories starting at x(t0) = x∗(t0), the tracking error e(t) = x(t) − x∗(t) is
identically zero for all t ≥ t0.

A2 For any constant positive definite symmetric matrix K the following relation
is uniformly satisfied

D∗(x, u, t) = R∗(x, u, t) + B∗(x, t)KB∗(x, t)� > 0

Theorem 1. Consider the system (16)-(17) in closed loop with the controller

u = u∗(t) − KB∗(x, t)e (18)

Then, under assumptions A1 and A2, the tracking error e(t) is globally asymp-
totically stabilized to zero.

Demostración. Let us define eu = u − u∗(t) and the following

M∗(t) =
[
(J x

1 −Rx
1)x∗(t) · · · (J x

n −Rx
n)x∗(t)

]
, L∗(t) =

[
B1x

∗(t) · · · Bnx∗(t)
]

Q∗(t) =
[
(J u

1 −Ru
1 )x∗(t) · · · (J u

m −Ru
m)x∗(t)

]
(19)

Straightforward computations show that the error dynamics reads as

Aė = [J ∗(x, u, t) −R∗(x, u, t)] e + B∗(x, t)eu, ye = B∗(x, t)�e (20)

where

J ∗(x, u, t) = J (x, u) + 1
2

[P∗(t) − P∗(t)�
]
, B∗(x, t) = B(x) + Q∗(t)

R∗(x, u, t) = R(x, u) − 1
2

[P∗(t) + P∗(t)�
] (21)

with P∗(t) = M∗(t) + L∗(t) . We refer to (20) as the exact open loop error
dynamics. Take now the following Lyapunov function candidate

V =
1
2
e�Ae (22)

whose time derivative along the closed-loop dynamics (20)-(18) is given by

V̇ = −e�
[R∗(x, u, t) + B∗(x, t)KB∗(x, t)�

]
e

By A2 the proof is completed.



Note that the picosatellite dynamics can be written in the form of the general
model (16) with

A = J, J (x) = S(JΩib), R(x, u) = 0, B = I, E(t) = 0 (23)

so that it is possible to obtain the tracking error dynamics. Note that in this
case (15) plays the role of e and

τ̃ = τ − τd

with
τd = JΩ̇ibd

− S(JΩibd
)Ωib

plays the role of eu in Theorem 1. Straight forward computations show that

L∗(T ) = Q∗(t) = 0, B∗ = I

and

M∗(t) =

⎡
⎣ 0 JyyΩibd3 −JzzΩibd2

−JxxΩibd3 0 JzzΩib1

JxxΩibd2 −JyyΩibd1 0

⎤
⎦

as a result, we have

J ∗(x, t) =

⎡
⎣ 0 1

2Aj − 1
2Bj

− 1
2Aj 0 1

2Cj
1
2Bj − 1

2Cj 0

⎤
⎦ (24)

where Aj = (Jxx + Jyy) Ωibd3 −2JzzΩib3 , Bj = (Jxx + Jzz)Ωibd2 −2JyyΩib2 and
Cj = (Jyy + Jzz)Ωibd1 − 2JxxΩib1 . Moreover,

R∗(t) =

⎡
⎣ 0 1

2ArΩibd3 − 1
2BrΩibd2

1
2ArΩibd3 0 1

2CrΩibd1

− 1
2BrΩibd2

1
2CrΩibd1 0

⎤
⎦ (25)

with Ar = Jxx − Jyy, Br = Jxx − Jzz, and Cr = Jyy − Jzz. Thus, the tracking
error dynamics is described by the following equations

Aẏ = [J ∗(x, t) −R∗(t)] y + τ̃ (26)

Now we verify that assumption A2 is satisfied. Note that by selecting K =
diag{k, k, k} we have

D∗(t) =

⎡
⎣ k 1

2ArΩibd3 − 1
2BrΩibd2

1
2ArΩibd3 k 1

2CrΩibd1

− 1
2BrΩibd2

1
2CrΩibd1 k

⎤
⎦

It is easy to verify that D∗(t) is a positive definite matrix provided the constant
k is selected in such a way that the following inequalities are satisfied

k > 0, k >
1
2
Arσ1, k >

1
6
(108c + 12

√
12b3 + 81c2)

2
3 − 2b

(108c + 12
√

12b3 + 81c2)
1
3

(27)



where c =
1
4
ArBrCrσ

3
1 , b = −1

4
(A2

r + B2
r + C2

r )σ2
1 and we have used the fact

that
Ωibd

= − Δε̃

1 + ε̃�ε̃
− Rb

oΩio (28)

is a bounded signal, that is,

||Ωibd
|| ≤ δ

2
+ |Ωio| = σ1 (29)

as ∥∥∥∥ Δε̃

1 + ε̃�ε̃

∥∥∥∥ ≤ δ

2
, ||Rb

o|| ≤ 1 (30)

Finally, we have

Proposition 1. Consider the differential equations (4)-(5) that describe the
kinematics and dynamics of a picosatellite in closed loop with the controller

τ = ∓ε̃ ∓ KΔ
ε̃

1 + ε̃�ε̃
− K

(
Ωib + Rb

oΩio

)
+ τd (31)

Then for any k that satisfies (27) and any δ > 0 the equilibrium point[
η∗, ε∗, Ω∗

ib

]� =
[
ηd, εd, Rb

o(ηd, εd)Ωio

]�
is globally asymptotically stable.

Demostración. Note that in terms of the tracking errors η̃, ε̃ and y the picosatel-
lite behavior is described by equations (11) and (26). Moreover, the control law
(31) in terms of tracking errors reads as

τ̃ = ∓ε̃ − Ky

Consider now the Lyapunov function

V = (η̃ ± 1)2 + ε̃�ε̃ +
1
2
y�Ay

it is straight forward to verify that its time derivative along the trajectories of
the system (11) and (26) in closed loop with (31) is given by

V̇ = − Δε̃�ε̃

1 + ε̃�ε̃
− y�D∗(t)y

Due to the fact that the time varying terms in D∗(t) are uniformly bounded this
matrix is positive definite uniformly. Then, by LaSalle Theorem we have that

ĺım
t→∞ ε̃ = 0, ĺım

t→∞ y = 0

finally, as the quaternion error represents a rotation it follows that η̃2 + ε̃�ε̃ = 1.
As a consequence η̃ = ±1. This concludes the proof.

Remark 1. It is possible to verify that

‖ ± ε̃�y + τd‖ ≤ κ1 + κ2‖y‖
for some positive constants κ1 and κ2. Therefore, in the numerical simulations
of the next Section we consider the control law given by τ = −Ky.



4. Simulations results

Numerical simulations were carried out to evaluate the performance of the
proposed controller. The picosatellite parameters consider the weight distribu-
tion of a CAD model of the picosatellite developed by the Engineering Insti-
tute from the National Autonomous University of Mexico and the Research
and Advanced Studies Centre of the National Polytechnic Institute. From the
CAD model we obtain the inertia parameters as Jxx = 0,001905Kgm2, Jyy =
0,002905Kgm2 and Jzz = 0,00248Kgm2. We consider re = 6378Km, r = 7378Km
and g = 9,81m/s. This gives Ωo = 0,0009968rad/s that corresponds to an or-
bit period of approximately 6300 s. We have also implemented the picosatellite
dynamics in a virtual reality environment in order to verify that all rotations
involved are satisfactory, see Figure 1. Figure 2 shows the attitude error and the
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Figura 2. (Right) Attitude error for qd = [1 0 0 0]�. (Left) Relative angular rate
Ωob.

control torque for qd = [1 0 0 0]� while Figure 3 shows the attitude error and
control torque for qd = [−1 0 0 0]�. As it can be observed the tracking errors
converge to the desired value with bounded control inputs. In both simulations
we consider q(0) = [0 1 0 0]�, Ωob(0) = [0 0 0]� and the controller gains
δ = 0,000001, k = 0,01.

5. Conclusions

We have presented a nonlinear controller that solves the attitude stabilization
problem of a picosatellite. The proposed controller is based on a combination of
two successful control design methodologies: backstepping and exact tracking er-
ror dynamics passive output feedback. The controller performance was evaluated
through numerical simulations and a virtual reality implementation.

Some issues are left open in this paper. First, we do not provide a formal
proof showing global asymptotic stability of the desired equilibrium point for
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Figura 3. (Right) Time evolution of the control torque τ . (Left) Attitude error for
qd = [−1 0 0 0]�.

the controller of Remark 1. Second, we are not considering environmental dis-
turbances like aerodynamic drag and solar radiation. Finally, as this work is
part of a study of possible actuator/controller configurations it is necessary to
consider other kinds of actuators, for instance, magnetic coils.
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